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   Iterative dynamic programming employing randomly chose candidates for admissible 
control is applied to minimization of distillation startup time. The solution of this high 
dimensional problem was facilitated mainly due to avoiding of iterative algebraic 
equation inside a rigorous dynamic distillation model which is less computer time 
consumer. The control variable is the reflux ratio. Both piecewise constant control and 
piecewise linear control strategies were investigated. The decrease of the startup time 
and heat consumption are high, having an important economic significance. 
 
Introduction 
 

   Time-optimal control (TOC) is a challenge in engineering: the general problem of 
reaching a desired final state from a set of given initial condition in minimum time by 
an adequate control policy occurs very often in chemical engineering, especially in 
process startup. This transition should be accomplished as fast as possible because the 
intermediate product has no economic value. In many cases, the value of utilities and 
time consumed during the startup period are important, and, in fact, they are wasted. 
   For high-dimensional nonlinear systems, TOC problems are extremely difficult to be 
solved. Usually, methods based on dynamic programming were limited to systems with 
low dimensionality. By introduction of iterative dynamic programming (IDP) by Luus 
(1989), that employs systematic contraction of the search region and thus dispenses with 
the need for a fine grid, the problems dimensionality can be significantly increased. 
However, the applications presented in literature were, especially, from the field of 
chemical reactors, involving a reduced number of state variables. TOC of startup 
distillation columns involves much more state variables, being a very high-dimensional 
problem. 
 
Mathematical Formulation of TOC   
 

   The continuous dynamic system is described by differential equations 
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where si are the state variables with initial state si(0), i =1,2,…, ns given, and ui are 
control variables subject to the bounds: 
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a) Picewise constant control 
   In order to transform the continuous control policy into a piecewise constant control 
problem, the time interval ftt ≤≤0 is divided into S time stages of variable length 
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where values of control variables are kept constant during each of these time intervals. 
The reason of variable length stages is to determine switching times accurately. 
   By introduction (Bojkov and Luus, 1994) of the normalized time variable τ  such that 

ftt=τ with the discrete values SkSkk ,...,1,0, ==τ  in the transformed time 

domain, each stage is of equal length S1 . The eqs 1 in the time interval 

1+≤≤ kk τττ  become:  
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   The TOC problem is to determine the control variables 
Sknuiu ki ,...,2,1;,...,2,1,)( ==τ and the length of time stages Skkv ,...,2,1,)( =  

such that 
nsists
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where 
iss are the desired final stationary state values, and the final time ft  is 

minimized. 
   In order to minimize the final time ft  subject to constraint eqs 5, the penalty 
performance index was formulated as 
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where ω > 0 is a penalty coefficient, and the final values of state variables 
nsits fi ,...2,1,)( =  are calculated by integration of eqs 4. 

   In applications it was used the TOC algorithm proposed by Bojkov and Luus (1994), 
based on the IDP procedure employing randomly chose candidates for the admissible 
control given by Bojkov and Luus (1992, 1993). 

b) Piecewise linear control 
   In some cases a continuous control policy is preferred, rather than a policy that 
requires sudden switching from one level to another.  
   According with the procedure proposed by Luus (1993) a piecewise linear control 
policy  ui  in the time interval (tk , tk+1) is given by: 
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where  ui(k) is the value of  ui at tk and ui(k+1) is the value of  ui at tk+1. The optimal 
control problem then is to find ui(k), i = 1,2…,nu;k = 0,1,…,S-1, such that the 
performance index in eq 6  is minimized. For the last stage ui is kept constant at the 
value ui(S-1). By iterative dynamic programming, eq 7 does not introduce any 
difficulties, since ui(k+1) is known from the previous stage and all that remains is to 
find the best value for ui(k) at the beginning of the interval. In order to provide a 
continuous control policy, a single point is used for s-grid at each time stage. Luus 
(1993) considered that despite situation where convergence difficulties may result, from 
the point of view of simplicity it is a good compromise. 
Startup Distillation Operational Procedure 



 

   Startup of distillation columns is a very challenging control and simulation problem 
due to both theoretical and practical aspects. A general sequence of actions which forms 
the basis for different startup procedures was formulated by Ruiz et al (1988). 
   At the end of several actions all plates has enough liquid holdup so that the liquid can 
start to fall down the downcomers. The downcomers are sealed and no vapor can go up 
through them. The liquid composition is the same on all plates, being equal with the 
feed composition. In the frame of present work these conditions define the initial state 
from which begins the effective startup transient operating regime procedure. 
Traditionally, the column is operated at constant values of control parameters (reflux 
ratio, reboiler heat duty, etc). Usually, these are the prescribed values for the desired 
stationary regime. In an optimal transient regime procedure the column will be operated 
at prescribed time-distributed values of control parameters in order to minimize the 
duration of the transient regime. 
   To establish the optimal time-distributed values of control parameters besides a TOC 
algorithm, an adequate dynamic distillation model (DDM) is needed. This model 
corresponds with the applied formulation of the general eqs 1 and 2. 
 
Dynamic Distillation Model 
 

   In a rigorous dynamic distillation model (DDM) at each time stage representing an 
integration step of differential mass- and energy-balances, the calculation of 
temperature and vapor composition on the column plates is made by an iterative 
procedure solving algebraic nonlinear equations. For optimization purposes, due to the 
computer time reasons, these models are not suitable. The DDM proposed by 
Woinaroschy (1986a) represents a good compromise between the degree of complexity 
and correctness.  The advantage and originality of the selected model consist in the fact 
that the iterative algebraic equations are avoided.  
   The following simplification assumptions are present in this model: 

i) The molar vapor holdup is negligible compared to the molar liquid holdup; 
ii) Interphase heat transfer is considered much more intense than interphase mass 

transport; consequently, the liquid and vapor leaving each plate are in thermal 
equilibrium at the boiling temperature corresponding to the liquid composition; 

iii) On each plate the liquid and vapor are perfectly mixed and Murphree plate 
efficiency is applied; 

iv) Entrainment and weeping rates, flooding of the plates, downcomer holdup, and 
delay time between plates are neglected. 
   With exception of the fourth assumption, these hypotheses are present in most of 
rigorous DDM.  
   For a typical plate in a distillation column, neglecting the molar vapor holdup, with 
the usual notation for distillation, mass- and energy-balance equations are defined thus: 
   Component mass balance around plate j for component i: 
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   Total mass balance around plate j: 
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   Total energy balance around plate j: 
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   By developing of the left side of eq 8 and after substitution of eqs 9 and reordering, 
the applied form of component mass balance around plate j for component i is: 
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   The original feature of the model (due to the iterative solving of nonlinear algebraic 
equations is avoided) consists in the calculation of the temperature on each plate. 
Starting from the vapor composition constraint on plate j: 
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by differentiation versus time of this equation, making several substitutions according 
with corresponding expressions of the variables, and some other differentiations versus 
time, an original equation for dynamic calculation of temperature on plate j results: 
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   The core of the model consists in the system of ordinary differential equations 9, 11, 
and 13, that represent the particularization of the general  continuous dynamic system 
(eq 1). The state variables are Nj, j=1,2..n;  xi,j, i=1,2..m-1, j=1,2..n;  and Tj, j=1,2..n.   
The reflux ratio can be assigned as control variable u. 
   The variation of total pressure during each time integration step is much more small 
than the variations of composition and temperature. In order to simplify the procedure, 
the pressure pj on the tray j is considered constant along the time integration step, but it 
will be recomputed at the beginning of each new time step: 

jjj ppp Δ−= +1             (14) 
where the tray pressure drop Δpj is calculated on the base of hydraulic correlations, 
specific for the plate type. 
   Vapor flow rate Vj is obtained from total energy balance (eq 10) and the vapor 
composition is calculated according to Murphree efficiency. Liquid flow rate Lj is 
computed on the base of Francis' correlation for the corresponding plate weir. The 
equilibrium, thermodynamic data, and other physical properties correlations are selected 
in function of the mixture nature. 
   The system of differential equations was numerically integrated by fourth order 
Runge-Kutta-Gill method. Due to the strong nonlinearity of eq 13, a small initial 
integration step must be used, respectively 2 s. The corresponding increasing of the 
computer time due to the small value of the integration step is justified by avoiding of 



iterative algebraic equations which are higher computer time consumer. This DDM was 
favorably certified by several theoretical and experimental tests (Woinaroschy, 1986b). 
 
Application 
 

 A mixture of four components (60% benzene, 20% toluene, 10% ethylbenzene and 
10% o-xylene) is distillated in an industrial scale sieve plates column (30 plates, 3.5 m 
diameter, lateral downcomers). 
The vapor pressures Pi,j of components were calculated on the base of Antoine equation.  
   The TOC algorithm was applied for S=5 time stages, in order to establish the optimal 
reflux control, for piecewise constant case, and for piecewise linear case (Figure 1). The 
temperature evolutions in time, on plate 30 (bottom plate), are shown in Figure 2. The 
grid points number for s-grid was 5 for piecewise constant case, and one for piecewise 
linear case, 9 for u-grid, and 9 for v-grid. The region contraction factor was set at 0.8, 
and the total number of IDP iterations was 10.  
   The corresponding values of start-up time are: 135 min. for traditional operating 
procedure (with constant reflux ratio 2), 59 min. for piecewise constant control of reflux 
ratio, and 48 min. for piecewise linear control of reflux ratio (2.29 and, respectively, 
2.81 times lower in comparison with traditional operating procedure). The 
corresponding heat consumption is reduced from 2815 kWh for traditonal operating 
procedure to 1230 kWh and, respectively, 1001 kWh. 

 

Figure 1. Optimal reflux control for piecewise constant and for piecewise linear cases  
 
Discussion 

 

   The selected value for the number of time stages S=5 seems to be too small. A higher 
value of this number increases exponentially the CPU time without a substantial 
improving of the performance index. This fact is argued by several references examples 
(Luus, 1989; Luus and Galli, 1991). 
   The improvement obtained by TOC of startup distillation in comparison with a 
traditional startup procedure seems to be artificially amplified. But this traditional 
startup procedure is frequently used. Due to bang-bang control (especially in the case of 
piecewise constant), the practical implementation of the optimal policies obtained here 
can lead to some hydrodynamic problems (flooding, weeping, liquid entrainment, etc). 
Therefore, it is useful to test these control policies by simulations, using a DDM with 
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more detailed plate hydraulics. In this way, some sub-optimal control policies, avoiding 
wrong hydrodynamic regimes, can be identified by suitable corrections.  
   The procedure used here was also applied with very promising results for azeotropic 
mixtures, for reboiler heat duty control, and for combination of reflux and  reboiler heat 
duty control. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

                                         
                                  Figure 2. Temperature evolutions in time on plate 30 
 
Conclusions 
 

   It was proved the ability of IDP to solve high dimensional TOC problems, involving 
complex models. Optimal control policies for startup distillation columns were obtained 
on the base of a DDM representing a good compromise between correctness and 
complexity. This result was possible mainly due to the transformation of the differential 
algebraic equations model into an ordinary differential equations model, which is less 
computer time consumer. The decrease of the startup time and heat consumption were 
high, having an important economic significance. 
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